The UCC14240-Q1 uses a proprietary integrated transformer technology to enable designers to cut their power solution size in half for use in high-voltage environments such as electric vehicles (EVs), hybrid EVs, motor-drive systems and grid-tied inverters.
With the accelerating growth of the EV market, automotive design engineers are looking for ways to improve efficiency and reliability, while also reducing the weight of the heaviest part of the EV: the powertrain. As a consequence, engineers are moving to a distributed power architecture, a scheme where every isolated gate driver has a dedicated bias supply.
This architecture improves how the system reacts to single-point failures. For example, if one bias supply fails, the other bias supplies remain operational, as do their paired gate drivers - helping to keep a vehicle safely on the road. Fully integrated power solutions such as the UCC14240-Q1 help engineers take advantage of distributed architecture.
The module offers size and efficiency advantages that enable greater power density and system efficiency, which can allow vehicles to drive farther between charges.
The 3.55-mm height and small footprint enable designers to reduce the power solution volume by as much as 50%. The height reduction also gives engineers the flexibility to place the module on either side of the printed circuit board.
This dual-output power module offers 60% efficiency - twice that of traditional bias supplies - doubling the power density and helping increase vehicle driving range. By delivering more than 1.5 W at ambient temperatures of 105°C, the UCC14240-Q1 enables engineers to drive isolated gate bipolar transistors (IGBTs), silicon carbide (SiC) and gallium nitride (GaN) switches at high frequencies.
By leveraging TI’s integrated transformer technology with a 3.5-pF primary-to-secondary capacitance, the UCC14240-Q1 can mitigate EMI caused by high-speed switching and can comfortably achieve common-mode transient immunity (CMTI) performance of more than 150 V/ns.
Featuring soft switching, spread-spectrum modulation, shielding and low parasitics, the module enables designs to more easily meet the electromagnetic compatibility standards of Comité International Spécial des Perturbations Radioélectriques (CISPR) 25 and CISPR 32, speeding time to market.
The UCC14240-Q1’s integrated closed-loop control enables ±1.0% accuracy from -40°C to 150°C. The device’s tight tolerance enables the use of smaller power switches while also improving overcurrent protection. Fault monitoring, overcurrent protection, overpower protection and overtemperature protection are all fully integrated.
The module offers third-party-certified 3-kVrms isolation and delivers what TI says is the industry’s best vibration immunity due to its ultra-low weight and 3.55-mm height.